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In photographic intensity measurements, the non-observability of a reflexion establishes a conditional 
probability distribution for the true value of F that is undefined below an observational threshold. By 
contrast, counter methods yield values of F~o in which the errors can be expected to approach a normal di- 
stribution even for the weakest reflexions. In a least-squares refinement, preferably based on F 2, this 
normal distribution should not be distorted by the arbitrary exclusion, or other maltreatment, of 'un- 
observed' reflexions. Such selective tampering with weak intensities biases the input data and so risks 
systematic error in the refined parameters. The expected effect is illustrated by a numerical experiment. 

Among the more bewildering features of crystallo- 
graphic data processing is the variety of prescriptions 
in vogue for the doctoring of reflexions too weak to 
be accurately measured. Two fallacies seem to lie at 
the root of much of the perplexity. One is a specious 
attempt to augment the information conveyed by the 
absence of a detectable intensity on an X-ray film with 
extraneous considerations of non-experimental origin. 
The other is an inertial tendency to use a diffractometer 
as a tool for simulating photographic data. Both con- 
tinue to inflict an unknown burden of avoidable error 
on many crystallographic refinements. 

Unobserved reflexions in photographic data 

On an X-ray diffraction photograph, weak reflexions 
may produce no detectable mark and so deserve the 
label 'unobserved' or 'accidentally absent'. Several 
schemes have arisen for handling this situation, in- 
cluding the total neglect of all such reflexions. Hamil- 
ton (1955), Cruickshank, Pilling, Bujosa, Lovell & 
Truter (1961), and Arnott (1965) have fallen back on 
a priori probability distributions to supply expected 
amplitudes and variances for unobserved reflexions to 
be used in least-squares calculations, though Hamil- 
ton (1955) implicitly acknowledges the irrelevance of 
such a priori estimates when values of Fc are available 
from a refined model. A more basic flaw is that such 
a proposal seeks to graft onto Fo properties that belong 
to Fc and so undermines in advance the vital confron- 
tation, via least-squares matching of F~ to Fo, between 
the structural model and the experimental evidence. 

Dunning & Vand (1969), demonstrating the incon- 
sistency of this approach, assign to unobserved reflex- 
ions a uniform - we would rather call it undefined - 
probability distribution between zero and an estimated 
observational threshold Flim, which requires that such 
reflexions be disregarded so long as F~ is smaller than 
FHm. These authors evidently take the probability den- 
sity to fall abruptly to zero above FHm and so offer 
no definitive recipe for dealing with reflexions whose 
F¢, at the end of a refinement, exceeds F~im. (They value 

unobserved reflexions mainly for promoting the con- 
vergence of a crude model, a practical objective justi- 
fying a pragmatic solution; once convergence has been 
assured, a more fundamental standard becomes ap- 
propriate.) An answer favoured by some workers, and 
ourselves, is to give these reflexions, i.e. when Fo< 
Fl im < Fc, the same amplitude and statistical weight as 
would be given to an observed reflexion having Fo = 
F~im. This amounts to postulating a conditional prob- 
ability distribution, supposing the true value of F to 
exceed F, im, that falls off in the usual way with in- 
creasing F-Fl im.  Thus, the knowledge that a reflexion 
is unobserved says nothing about the relative prob- 
abilities of different values of F below the threshold 
value Fl~m, nor does it assign a numerical probability 
to the proposition that the true value lies below F~m 
rather than above;* what it tells us, provided F~im has 
been suitably chosen, is that increasing values of F 
above F~im are increasingly improbable. Accordingly, 
we should set Eli m at the point where the postulated 
probability function begins to decline and fix its weight 
m keeping with the steepness of this decline. But un- 
animity has yet to be achieved in the way crystallo- 
graphers actually handle their data, and this question, 
like the related one of attaching weights to the ob- 
served reflexions, still offers ample scope for individual 
taste or contagious fashion. 

Diffractometer data 

More strangel-, the habit of classifying reflexions as 
observed or unobserved, with the associated wealth of 
stratagems for handling the latter, has often survived 
the transition from photographic to diffractometric 
recording methods, creating confusion where none 
should have arisen. At least one popular text (Stout 
& Jensen, 1968) deplores this practice, asserting ' that  

* One can in principle, by integrating between Fjl,, and some 
higher limit, obtain a lower bound to the absolute probability 
that F lies below this higher limit. Such a futile exercise has 
scant relevance to the least-squares method. 
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there is no theoretical basis for dropping reflexions, 
and that the 'best' results will be obtained from the 
complete data'. This dissent has recently gained rein- 
forcement from a persuasive denunciation by Moore 
(1972) of the fraudulent suppression of weak intensi- 
ties. Essentially the same lesson, it appears, has long 
been preached to more select audiences by such early 
converts as V. Schomaker and R. E. Marsh (personal 
communications). Our own late initiation was endorsed 
by Hamilton (1972), who ignited a lively debate by 
publicly championing our arguments in an unscheduled 
addendum to his prepared lecture. Our present aim, 
then, is to amplify this protest, for which we can claim 
authoritative support rather than priority of discovery. 

The pertinent difference between cameras and diffrac- 
tometers is that, unlike the photographic film, quan- 
tum counters are mainly limited in sensitivity, not by 
a lack of instrumental response to weak intensities, 
but by background noise of various kinds. In diffrac- 
tometric measurements, the observed intensity that is 
taken as proportional to Fo 2 typically appears as a dif- 
ference I - B  between total and background counts, 
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F i g .  1. S c h e m a t i c  d i s t r i b u t i o n  o f  m e a s u r a b l e  q u a n t i t i e s  y~, in -  
d e x e d  in  o r d e r  o f  d e c r e a s i n g  yT/a~. H e a v y  c u r v e s  r e p r e s e n t  
t r u e  v a l u e s  y r  l i g h t e r  c u r v e s  b o u n d  l i ke ly  r a n g e s  o f  o b -  
s e r v e d  values. (a) weak terms (y~<o'~) rejected; (b) weak 
terms assigned threshold values yf' = o't. 

each of which may be made large enough, with rea- 
sonable counting times, to approach a normal error 
distribution. Their difference, whatever its magnitude, 
will then likewise have normally distributed errors - 
Hamilton (1964) has emphasized that this is theoretic- 
ally and practically advantageous but not strictly essen- 
tial - and be eminently suited, with no preliminary tam- 
pering, as input data to a least-squares refinement. Sta- 
tistical integrity demands that all measured reflexions 
be treated impartially, whether Fo 2 is greater or smaller 
than a(F z) or even negative. An algebraic demonstration 
of the propriety of faithfully including the net observed 
intensity in least-squares calculations even when it hap- 
pens to be negative has been given by Schomaker 
(1969). (To reject negative values of I - B  may be re- 
garded as another instance of the imposition on the 
experimental data of constraints drawn from our model 
rather than from the observational evidence.) 

Preserving the normal distribution 

If the expected errors in the intensity data are indeed 
normally distributed, all care should be taken to keep 
them so, including the choice to refine on F 2 rather 
than on F. (It is not possible for both F and F 2 to have 
normal error distributions when F]a(F) is small.) In 
this respect the exclusion, whether absolute or contin- 
gent, of weak reflexions merely because they are weak 
is far more damaging than simply reducing the number 
of observations. When we selectively reject weak in- 
tensities, we discard more underestimated than over- 
estimated reflexions and so destroy the assumed sym- 
metry in the error distributions of the surviving data. 
The resulting bias will inevitably lead to systematic er- 
ror in those parameters, principally the thermal par- 
ameters, that depend strongly on the average inten- 
sities of many weak reflexions. 

Suppose we have a set of measurable quantities Yi - 
which might stand for F z - whose experimental errors 
are normally distributed with standard deviations ch. 
In fact the only property of the normal distribution we 
care about here is its symmetry, i.e. that positive and 
negative errors of equal magnitude are equally likely. 
Ordering our data by decreasing y~/ai, where YT is the 
true value of Yl, we might expect a distribution such as 
that illustrated in Fig. 1, in which the hypothetical as- 
sembly of discrete points has been idealized to a con- 
tinuous thick curve. This is bracketed between two 
parallel thinner curves, drawn to represent the expected 
ranges of observed values y~ = y r  + Jl, where the errors 
Jl are depicted as contained largely between the limits 
-4- 0"1. 

One regrettable, but not uncommon, practice is to 
drop all measurements giving y~ < ch. These are rep- 
resented by the shaded region in Fig. l(a). Through- 
out a range of data corresponding roughly to y r  < 2~  
the accepted values are seen to include a preponder- 
ance of positive errors. A least-squares refinement, 
which should produce calculated values yC tightly 
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clustered about the true values yr, will instead tend 
to make J ,  in the affected range, systematically larger 
than yr. Of course, deletion of a large proportion of 
the least accurate data will invariably improve the 
average agreement between yO and yL This effect may 
account for the popularity of the habit, since lower 
agreement factors are easier to recognize than sys- 
tematic errors in the parameters. 

An alternative scheme, closely akin to that recom- 
mended above for photographic diffraction data, is to 
replace yO by y" = a whenever yO < a but to include such 
a term in the least-squares equations only i f S  exceeds 
ym. Analysis of this procedure is more complex, largely 
because the selection of admitted reflexions depends on 
the variable quantities yL But we can imagine a hypo- 
thetical refinement cycle in which the initial values of 
all parameters happen to equal their true values. We 
should then (assuming a perfect model) have all y~ = 
yt r and the situation would be as shown schematically 
in Fig. l(b). In the range yr  < o" all terms with yO < a 
are again rejected. But for yr  > a, terms with yO < a 
are now included with, however, yO adjusted upward 
to y ' = a .  The resulting bias is qualitatively the same 
as in the former scheme but somewhat mitigated in 
severity. On the final refinement cycle, which is the 
only one that ultimately matters, we expect that many 
values of J ,  in the range of interest, will have risen 
above yr  in an attempt to match the biased sample of 
yO. To the extent that the model parameters favour paral- 
lel variations in the values of neighbouring y~ - the 
way shifts in thermal parameters raise or lower many 
F~ values in unison - this may move a proportion of 
the y" terms from the rejected to the accepted category, 
but Fig. l(b) should still describe fairly the overall 
effect. 

Clearly, setting the qualifying hurdle, as many do, 
at some multiple of a rather than a itself is a change 
in detail, not in substance. 

Numerical test 

The predicted effects are readily demonstrated by a 
simple numerical experiment. For purposes of illus- 
tration we have constructed a hypothetical crystal 
structure containing a single atom at the origin of a 
cubic unit cell of 1 ~ edge. Selecting the 50 indepen- 
dent lowest-angle reflexions, from 100 to 533, we 
have calculated structure factors using a constant scat- 
tering factor f =  1 as for a point charge (or a neutron- 
scattering length b= 1) and an isotropic thermal par- 
ameter U=0.0036 A z, chosen arbitrarily to give a 
ratio near 20:1 between the largest and the smallest 
structure amplitudes. The calculated structure factors 
define our true values F~. A random-number routine 
was then used to generate 40 independent sets of ran- 
dom 'errors', for all 50 reflexions, having, verifiably, 
normal probability distributions and standard devia- 
tions cr(F 2) =0"lFr .  (The actual moments of the 2000 
values of t~=dffcq were: ( t ) = - 0 - 0 3 7 ,  (t ' )  = l .006, 

( t  3) = -0"104, ( t  4) =3"019, as against the ideal values: 
0 , 1 , 0 , 3 . )  

The resulting 40 sets of data, each comprising sim- 
ulated values of Fo 2 for the 50 reflexions, were succes- 
sively presented as input to a least-squares routine for 
the refinement of two parameters: the scale factor k 
and the isotropic thermal parameter U. Five refine- 
ment cycles were applied to each data set, minimizing 
the residual 

A= ~ w(Fo2-k2F~) 2 

with w=a-2=lOO/F~. All 40 refinements were per- 
formed according to three alternative recipes. Scheme 
(a) omitted from the summation for A all reflexions 
with FoZ<o-(F2), producing the situation depicted in 
Fig. l(a). Scheme (b) corresponded to Fig. l(b), as- 
signing to reflexions with Fo z < a(F 2) threshold values 
F~ = o'(F 2) but including them in A only when k2Fc>2 
F,2,. Scheme (e) accepted all 50 observational data as 
given. 

The outcome of the experiment is summarized in 
Table 1. For each of the three schemes we list: the 
average number n of reflexions included in the final 
refinement cycle; the average discrepancy indices (with 
summation over included reflexions only) R=  ~[IFol- 
kFcl/~lFol and r=(A/~wF4o)l/2; the root-mean-square 
figure of merit d=[A/(n-2)]l/2; the average refined 
values of the parameters k and U; and their estimated 
standard deviations and correlation coefficient. For 
these last quantities, we compare averages of the con- 
ventional estimates derived from the inverse least- 
squares matrix A-I,  i.e. cr~,=(AU~)l/2d and 0(/l,v)= 
A~V/(AUUA~) ~/2, with direct estimates based on the 
sample variances of the final parameter values from 
the 40 independent 'experiments', i.e. a~=[~( /z-#)z /  
(40-1)] ~/z and ~ ' ( k , U ) = Y . ( k - f c ) ( f - O ) / [ ~ ( k - k )  2 
E( u -  Oy] '/'~. 

Table 1. Comparison of  three refinement schemes applied 
to the same 40 sets of  'experimental' data 

We use the notation (x)= J? for the arithmetic mean of x~, {x} 
for the root-mean-square value (x2) ~/'. 

Scheme a b c 
(n) 35"7 42-4 50-0 
(R) x 103 95 103 130 
{r} x 103 207 217 265 
{d} 0-938 0-902 1.006 
(k) × 104 9664 9765 9974 
{a(k)} x 104 273 260 293 
cr'(k ) x 104 313 298 291 
(U) × 106A -~ 3336 3432 3611 
{o'(U)} x 106A -z 131 121 141 
a'(U) x 106A -2 132 118 124 
(~o(k, U)) 0"76 0.75 0-74 
~'(k, U) 0.87 0.83 0-78 

'True' 
values 

10000 

3600 

As the Table confirms, rejection of weak reflexions 
has only a cosmetic virtue; it produces smaller dis- 
crepancy indices R and r. In column (a) we note that 
rejection of all reflexions with Fo 2 < a(F 2) has caused a 
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systematic underestimation of both k and U by amounts 
exceeding their apparent standard deviations. Scheme 
(b) is, as expected, not quite as bad as (a) but similarly 
faulty. On the other hand, admission, in scheme (c), 
of all 50 data, including those - an average of 5.3 per 
set - with negative values of F 2, leads to average values 
of k and U in close agreement with their ' true' values. 

Examination of the individual refinements shows the 
same pattern in the converged values of k and U re- 
peated for each of the 40 data sets; scheme (a) con- 
sistently yields the lowest values for both parameters, 
scheme (c) the highest. This is just as Fig. 1 predicts. 
The more weak reflexions we exclude, the greater the 
bias tending to raise the calculated values F 2 of the 
weak reflexions. In our model these are all high-angle 
reflexions and the best way to increase their magnitudes 
is to decrease U. Because of the strong positive correla- 
tion between k and U [Q(k, U) is consistently near 0.75] 
a drop in U entails a concomitant drop in k. 

The estimated standard deviations or(k) and or(U) 
show no appreciable differences among the three 
schemes tested. Insofar as schemes (a) and (b) appear 
to give slightly smaller standard deviations, as deduced 
from the least-squares matrix, than scheme (c), R. E. 
Marsh (personal communication) has noted that this 
is mainly an artefact due to multiplication by the 
questionable factor d, which is artificially depressed 
below unity by the selective exclusion, or 'adjustment',  
of underestimated reflexions. Accordingly, this trend 
in the least-squares estimates of or(k) and a(U) is not 
reflected in the corresponding 'experimental' estimates 
a '  from the sample variances. In any case, the observed 
variations are too small and irregular to suggest any 
clear difference among the three recipes either in the 
apparent magnitudes of the standard deviations or in 
the validity of the least-squares estimates of these stan- 
dard deviations for predicting the expected scatter in 
the parameter values from replicated experiments. The 
mischief caused by biased observational data shows 
up mainly in systematic, not random, errors in the 
derived parameters. 

Conclusions 

Without doubt, our computer experiment is highly 
artificial in enabling us to know both Fr  and cr(F 2) 
exactly and to verify directly the normal distribution 
of our experimental errors. In a real experiment, we 
never know Fr, we customarily depend on a rough 
estimate of or(F2), and we content ourselves with a 
pious hope that our observational errors are not too 
abnormally distributed. But none of these difficulties 
justify the gratuitous affront of an a posteriori selec- 
tion amorig the measured values of F 2. Should tech- 
nical limitations or economic pressure dictate the 

wholesale elimination of weak reflexions, fairness to 
the observational data demands that the discrimina- 
tion, on the last cycle, should be based on Fc, not 
on No. 

Our chosen model is unrealistic also in its utter 
triviality. In the more typical structure with many 
atoms in the asymmetric unit, weak reflexions are not 
confined to high angles and the vulnerability of the 
several parameters, both positional and vibrational, to 
systematic error is less easily predicted. This very un- 
predictability, however, is a reason for greater, not 
lesser, care in the proper handling of the input data. 
This is not to claim that the majority of published re- 
finements, including our own, require urgent reexam- 
ination. On the contrary, our limited experience in- 
dicates that in real situations the effect of biased data 
on the structurally interesting parameters is rarely 
large enough to matter. But it is plainly easier to avoid 
the error altogether than to detect the exceptional cir- 
cumstances where it might be significant. 

We are grateful for helpful comments by R. A. 
Young on an earlier draft of this paper. We also ben- 
efited from instructive and illuminating correspon- 
dence by R. E. Marsh, by F. H. Moore, and by V. 
Schomaker, who kindly sent us his unpublished notes 
on the subtraction of background counts in least- 
squares calculations. And we are glad to acknowledge 
a small part  of our debt to the late W. C. Hamilton, 
who welcomed our criticism of his own former opin- 
ions and even defended our conclusions in public, who 
led us to relevant background material and did all he 
could to encourage the prompt publication of our 
results. 
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